CAS OpenIR  > 生化工程国家重点实验室
Fusing literature and full network data improves disease similarity computation
Li, Ping1,2; Nie, Yaling1,2; Yu, Jingkai1
2016-08-30
发表期刊BMC BIOINFORMATICS
ISSN1471-2105
卷号17期号:AUG页码:326
摘要

Background: Identifying relatedness among diseases could help deepen understanding for the underlying pathogenic mechanisms of diseases, and facilitate drug repositioning projects. A number of methods for computing disease similarity had been developed; however, none of them were designed to utilize information of the entire protein interaction network, using instead only those interactions involving disease causing genes. Most of previously published methods required gene-disease association data, unfortunately, many diseases still have very few or no associated genes, which impeded broad adoption of those methods. In this study, we propose a new method (MedNetSim) for computing disease similarity by integrating medical literature and protein interaction network. MedNetSim consists of a network-based method (NetSim), which employs the entire protein interaction network, and a MEDLINE-based method (MedSim), which computes disease similarity by mining the biomedical literature.

关键词Disease Similarity Medsim Netsim Mednetsim Random Walk With Restart
文章类型Article
WOS标题词Science & Technology ; Life Sciences & Biomedicine
DOI10.1186/s12859-016-1205-4
收录类别SCI
语种英语
关键词[WOS]PROTEIN-INTERACTION NETWORKS ; SEMANTIC SIMILARITY ; GENE ONTOLOGY ; UPDATE ; PRIORITIZATION ; FIBROMYALGIA ; INFORMATION ; UNIFICATION ; SEARCHES ; BIOLOGY
WOS研究方向Biochemistry & Molecular Biology ; Biotechnology & Applied Microbiology ; Mathematical & Computational Biology
WOS类目Biochemical Research Methods ; Biotechnology & Applied Microbiology ; Mathematical & Computational Biology
项目资助者National Natural Science Foundation of China(61179008)
WOS记录号WOS:000382832300002
引用统计
文献类型期刊论文
条目标识符http://ir.ipe.ac.cn/handle/122111/21463
专题生化工程国家重点实验室
作者单位1.Chinese Acad Sci, Inst Proc Engn, State Key Lab Biochem Engn, Beijing 100190, Peoples R China
2.Univ Chinese Acad Sci, Beijing 100049, Peoples R China
推荐引用方式
GB/T 7714
Li, Ping,Nie, Yaling,Yu, Jingkai. Fusing literature and full network data improves disease similarity computation[J]. BMC BIOINFORMATICS,2016,17(AUG):326.
APA Li, Ping,Nie, Yaling,&Yu, Jingkai.(2016).Fusing literature and full network data improves disease similarity computation.BMC BIOINFORMATICS,17(AUG),326.
MLA Li, Ping,et al."Fusing literature and full network data improves disease similarity computation".BMC BIOINFORMATICS 17.AUG(2016):326.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
Fusing literature an(2653KB)期刊论文出版稿开放获取CC BY-NC-SA浏览 请求全文
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Li, Ping]的文章
[Nie, Yaling]的文章
[Yu, Jingkai]的文章
百度学术
百度学术中相似的文章
[Li, Ping]的文章
[Nie, Yaling]的文章
[Yu, Jingkai]的文章
必应学术
必应学术中相似的文章
[Li, Ping]的文章
[Nie, Yaling]的文章
[Yu, Jingkai]的文章
相关权益政策
暂无数据
收藏/分享
文件名: Fusing literature and full network data improves disease similarity computation.pdf
格式: Adobe PDF
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。