Extending Half Life of H-Ferritin Nanoparticle by Fusing Albumin Binding Domain for Doxorubicin Encapsulation | |
Wang, Chunyue1,2; Zhang, Chun1,2; Li, Zenglan2; Yin, Shuang1,2,3; Wang, Qi2; Guo, Fangxia2; Zhang, Yao2; Yu, Rong1; Liu, Yongdong2; Su, Zhiguo2 | |
2018-03-01 | |
Source Publication | BIOMACROMOLECULES
![]() |
ISSN | 1525-7797 |
Volume | 19Issue:3Pages:773-781 |
Abstract | Nanoparticles based on the heavy chain of the human ferritin (HFn) are arousing growing interest in the field of drug delivery due to their exceptional characteristics. However, the unsatisfied plasma half life of HFn substantially limits its application as a delivery platform for antitumor agents. Herein we fused an albumin binding domain (ABD) variant that basically derives from the streptococcal protein G and possesses a long-acting characteristic in serum albumin to the N-terminus of the HFn for the aim of half-life extension. This ABD HFn construct was highly expressed and fully self-assembled into symmetrical and spherical structure in E. coli bacteria. The purified ABD HFn showed a similar particle size with wild-type HFn and also exhibited an extremely high binding affinity with human serum albumin. To evaluate the therapeutic potential of this ABD HFn construct in terms of half-life extension, we encapsulated a model antitumor agent doxorubicin (DOX) into the ABD HFn. Significantly outstanding loading efficacy of above 60 molecules doxorubicin for each ABD HFn cage was achieved. The doxorubicin-loaded ABD HFn nanoparticle was characterized and further compared with the recombinant HFn counterpart. The ABD-HFn/DOX nanoparticle showed dramatically improved stability and comparable cell uptake rate when compared with HFn/DOX counterpart. Pharmacokinetics study in Sprague Dawley rats showed that ABD HFn/DOX nanoparticle possessed significantly prolonged plasma half life of similar to 17.2 h, exhibiting nearly 19 times longer than that of free doxorubicin and 12 times for HFn/DOX. These optimal results indicated that fusion with ABD will be a promising strategy to extend the half life for protein-based nanoparticles. |
Subtype | Article |
WOS Headings | Science & Technology ; Life Sciences & Biomedicine ; Physical Sciences |
DOI | 10.1021/acs.biomac.7b01545 |
Indexed By | SCI |
Language | 英语 |
WOS Keyword | DRUG-DELIVERY ; SERUM-ALBUMIN ; PROTEIN ; PHARMACOKINETICS ; PLATFORM ; NANOTECHNOLOGY ; APOFERRITIN ; EXTENSION ; NANOCAGES ; TUMORS |
WOS Research Area | Biochemistry & Molecular Biology ; Chemistry ; Polymer Science |
WOS Subject | Biochemistry & Molecular Biology ; Chemistry, Organic ; Polymer Science |
Funding Organization | National Natural Science Foundation of China(21576267 ; Beijing Natural Science Foundation(2162041) ; Open Funding Project of the National Key Laboratory of Biochemical Engineering(2014KF-05) ; Major State Basic Research Development Program of China(2013CB733604) ; 81773623) |
WOS ID | WOS:000427539600008 |
Citation statistics | |
Document Type | 期刊论文 |
Identifier | http://ir.ipe.ac.cn/handle/122111/24071 |
Collection | 生化工程国家重点实验室 |
Affiliation | 1.Sichuan Univ, West China Sch Pharm, Minist Educ, Key Lab Drug Targeting & Drug Delivery Syst, Chengdu 610041, Sichuan, Peoples R China 2.Chinese Acad Sci, Inst Proc Engn, State Key Lab Biochem Engn, Beijing 100190, Peoples R China 3.Univ Adelaide, Sch Chem Engn, Adelaide, SA 5005, Australia |
Recommended Citation GB/T 7714 | Wang, Chunyue,Zhang, Chun,Li, Zenglan,et al. Extending Half Life of H-Ferritin Nanoparticle by Fusing Albumin Binding Domain for Doxorubicin Encapsulation[J]. BIOMACROMOLECULES,2018,19(3):773-781. |
APA | Wang, Chunyue.,Zhang, Chun.,Li, Zenglan.,Yin, Shuang.,Wang, Qi.,...&Su, Zhiguo.(2018).Extending Half Life of H-Ferritin Nanoparticle by Fusing Albumin Binding Domain for Doxorubicin Encapsulation.BIOMACROMOLECULES,19(3),773-781. |
MLA | Wang, Chunyue,et al."Extending Half Life of H-Ferritin Nanoparticle by Fusing Albumin Binding Domain for Doxorubicin Encapsulation".BIOMACROMOLECULES 19.3(2018):773-781. |
Files in This Item: | There are no files associated with this item. |
Items in the repository are protected by copyright, with all rights reserved, unless otherwise indicated.
Edit Comment