CAS OpenIR
Controlled synthesis and enhanced toluene-sensing properties of mesoporous NixCo1-xFe2O4 nanostructured microspheres with tunable composite
Zou, Yanzhao1; Wang, Hong1; Yang, Ruisong1; Lai, Xiaoyong2; Wan, Jiawei3; Lin, Guo1; Liu, Di4
2019-02-01
Source PublicationSENSORS AND ACTUATORS B-CHEMICAL
ISSN0925-4005
Volume280Pages:227-234
AbstractThe mesoporous NixCo1-xFe2O4 (x = 0, 0.33, 0.50, 0.67) nanostructured microspheres with tunable composite were successfully controllable synthesized by a simple solvothermal method. The results of XRD, XPS and FT-IR demonstrated that the Ni, taking the place of Co, were successfully doped into CoFe2O4. The gas sensing results demonstrated that the Ni0.33Co0.67Fe2O4 nanostructured microspheres showed higher gas-sensing response and better selectivity to harmful toluene than that of other samples. Moreover, the influences of Ni-doping amount on the structure, morphology and gas-sensing property of NixCo1-xFe2O4 were investigated. The enhanced gas-sensing properties of gas sensor based on Ni0.33Co0.67Fe2O4 to toluene may be due to appropriate Ni-doping into cobalt ferrite which resulted in the increased concentration of oxygen vacancies, large specific surface area (77.2m(2) g(-1)) and suitable catalytic activity. Therefore, the NixCo1-xFe2O4 will be a promising candidate for gas-sensing material for detecting toluene.
KeywordNixCo1-xFe2O4 Ni-doping Toluene Nanostructured microspheres Gas sensor
DOI10.1016/j.snb.2018.10.030
Language英语
WOS KeywordCOFE2O4 THIN-FILMS ; GAS SENSOR ; FERRITE NANOPARTICLES ; MAGNETIC-PROPERTIES ; SPINEL FERRITE ; PERFORMANCE ; NIFE2O4 ; TEMPERATURE ; OXIDE ; SUBSTITUTION
Funding ProjectNational Natural Science Foundation of China[51272165] ; National Natural Science Foundation of China[51672138] ; National Natural Science Foundation of China[51572177] ; Research Foundation of Key Laboratory of Material Corrosion and Protection of Sichuan Province[2014CL13] ; Research Foundation of Sichuan University of Science and Engineering[2014PY11] ; Research Foundation of Sichuan University of Science and Engineering[2015PY01]
WOS Research AreaChemistry ; Electrochemistry ; Instruments & Instrumentation
WOS SubjectChemistry, Analytical ; Electrochemistry ; Instruments & Instrumentation
Funding OrganizationNational Natural Science Foundation of China ; Research Foundation of Key Laboratory of Material Corrosion and Protection of Sichuan Province ; Research Foundation of Sichuan University of Science and Engineering
WOS IDWOS:000450302300029
PublisherELSEVIER SCIENCE SA
Citation statistics
Document Type期刊论文
Identifierhttp://ir.ipe.ac.cn/handle/122111/26563
Collection中国科学院过程工程研究所
Corresponding AuthorWang, Hong; Wan, Jiawei
Affiliation1.Sichuan Univ Sci & Engn, Sch Mat Sci & Engn, Key Lab Mat Corros & Protect Sichuan Prov, Zigong 643000, Peoples R China
2.Ningxia Univ, Sch Chem & Chem Engn, State Key Lab High Efficiency Utilizat Coal & Gre, Yinchuan 750021, Peoples R China
3.Chinese Acad Sci, Inst Proc Engn, State Key Lab Biochem Engn, Beijing 100190, Peoples R China
4.Jilin Univ, Key Lab Inorgan Synth & Preparat Chem, Changchun 130012, Jilin, Peoples R China
Recommended Citation
GB/T 7714
Zou, Yanzhao,Wang, Hong,Yang, Ruisong,et al. Controlled synthesis and enhanced toluene-sensing properties of mesoporous NixCo1-xFe2O4 nanostructured microspheres with tunable composite[J]. SENSORS AND ACTUATORS B-CHEMICAL,2019,280:227-234.
APA Zou, Yanzhao.,Wang, Hong.,Yang, Ruisong.,Lai, Xiaoyong.,Wan, Jiawei.,...&Liu, Di.(2019).Controlled synthesis and enhanced toluene-sensing properties of mesoporous NixCo1-xFe2O4 nanostructured microspheres with tunable composite.SENSORS AND ACTUATORS B-CHEMICAL,280,227-234.
MLA Zou, Yanzhao,et al."Controlled synthesis and enhanced toluene-sensing properties of mesoporous NixCo1-xFe2O4 nanostructured microspheres with tunable composite".SENSORS AND ACTUATORS B-CHEMICAL 280(2019):227-234.
Files in This Item:
There are no files associated with this item.
Related Services
Recommend this item
Bookmark
Usage statistics
Export to Endnote
Google Scholar
Similar articles in Google Scholar
[Zou, Yanzhao]'s Articles
[Wang, Hong]'s Articles
[Yang, Ruisong]'s Articles
Baidu academic
Similar articles in Baidu academic
[Zou, Yanzhao]'s Articles
[Wang, Hong]'s Articles
[Yang, Ruisong]'s Articles
Bing Scholar
Similar articles in Bing Scholar
[Zou, Yanzhao]'s Articles
[Wang, Hong]'s Articles
[Yang, Ruisong]'s Articles
Terms of Use
No data!
Social Bookmark/Share
All comments (0)
No comment.
 

Items in the repository are protected by copyright, with all rights reserved, unless otherwise indicated.