CAS OpenIR
Promotional effect of Ce doping in Cu-4 Al1Ox - LDO catalyst for low-T practical NH3-SCR: Steady-state and transient kinetics studies
Yan, Qinghua1; Gao, Yanshan1; Li, Yuran2; Vasiliades, Michalis A.3; Chen, Sining1; Zhang, Cheng1; Gui, Rongrong1; Wang, Qiang1; Zhu, Tingyu2; Efstathiou, Angelos M.3
2019-10-15
Source PublicationAPPLIED CATALYSIS B-ENVIRONMENTAL
ISSN0926-3373
Volume255Pages:18
AbstractThere are very few catalysts reported so far to withstand poisoning by the co-presence of SO2, HCl and H2O in the flue gas stream for the NH3-SCR. The purpose of this work was to report for the first time, to the best of our knowledge, the development of a new catalyst, Ce-2/Cu4Al1Ox-layered double oxide (LDO) with high low-temperature de-NOx activity and high poisoning resistance in the presence of H2O, HCl and SO2 in the feed gas stream. In particular, Ce-2/ Cu4Al1Ox-LDO catalyst in the presence of 5% H2O, 100 ppm HCl and 100 ppm SO2 in the NH3-SCR feed gas stream presented after 9 h of continuous reaction at 200 degrees C a relatively stable NOx conversion (ca. 57.2%), where all other three control catalysts tested, namely: Cu/Al2O3,Cu-Ce/Al2O3 and Cu-4 Al3Ox showed severe deactivation, where NOx conversion values of similar to 0, 0 and 51%, respectively, were measured. It should be noted that the Ce-2/Cu(4)Al(1)O(x)catalyst achieved NOx conversion of 95.3% at 200 degrees C in the absence of HCI and SO2 in the feed gas stream. A suit of experimental techniques such as BET, XPS, ICS, in situ DRIFTS, pyridine- and NH3-FTIR, NH3-TPD, H-2-TPR and transient NH3 chemisorption and NH3-SCR kinetics were employed to reveal possible reasons for the high activity and poisoning resistance exhibited by the Ce-2/Cu4Al1Ox catalytic system. XRD and XPS analyses showed that Ce-2/Cu-4 Al1Ox had highly dispersed Cu2+ and Ce3+ species, which likely promote the rate of NH3-SCR. Py-FTIR, NH3-TPD and H-2-TPR results indicated that Ce-2/Cu-4 Al1Ox has a larger concentration of surface acid sites and stronger redox properties. According to H-2-TPR, ICS and insitu DRIFTS analyses, the redox properties of Ce-2/Cu-4 Al1Ox were significantly less affected by the presence of HCI and SO2 gases, and lower amounts of metal sulfate and metal chloride species were formed, thus proving its exhibited poisoning resistance. Transient kinetics experiments revealed that the larger site reactivity (k, s( -1)) and NO oxidation rate to NO2 and not the surface coverage of adsorbed NHx-s active intermediates dictates the higher rate of NH3-SCR over Ce-2/Cu-4 Al1Ox compared to Cu/Al2O3 and Cu-Ce/Al2O3 non LDO- materials.
KeywordSelective catalytic reduction Layered double hydroxides SO2 poisoning of NH3-SCR HCl poisoning of NH3-SCR Transient kinetics of NH3-SCR
DOI10.1016/j.apcatb.2019.117749
Language英语
WOS KeywordLAYERED DOUBLE HYDROXIDES ; MIXED OXIDES ; REDUCTION SCR ; SO2 TOLERANCE ; FLUE-GAS ; NO ; TEMPERATURE ; NH3 ; PERFORMANCE ; HCL
Funding ProjectNational Natural Science Foundation of China[U1810209] ; National Natural Science Foundation of China[51572029] ; National Natural Science Foundation of China[51622801] ; Beijing Natural Science Foundation[2184114] ; Research Committee of the University of Cyprus
WOS Research AreaChemistry ; Engineering
WOS SubjectChemistry, Physical ; Engineering, Environmental ; Engineering, Chemical
Funding OrganizationNational Natural Science Foundation of China ; Beijing Natural Science Foundation ; Research Committee of the University of Cyprus
WOS IDWOS:000474501500007
PublisherELSEVIER SCIENCE BV
Citation statistics
Document Type期刊论文
Identifierhttp://ir.ipe.ac.cn/handle/122111/30297
Collection中国科学院过程工程研究所
Corresponding AuthorWang, Qiang; Efstathiou, Angelos M.
Affiliation1.Beijing Forestry Univ, Coll Environm Sci & Engn, 35 Qinghua East Rd, Beijing 100083, Peoples R China
2.Chinese Acad Sci, Inst Proc Engn, Natl Engn Lab Hydromet Cleaner Prod Technol, Res Ctr Proc Pollut Control, Beijing 100190, Peoples R China
3.Univ Cyprus, Heterogeneous Catalysis Lab, Chem Dept, 1 Univ Ave,Univ Campus, CY-2109 Nicosia, Cyprus
Recommended Citation
GB/T 7714
Yan, Qinghua,Gao, Yanshan,Li, Yuran,et al. Promotional effect of Ce doping in Cu-4 Al1Ox - LDO catalyst for low-T practical NH3-SCR: Steady-state and transient kinetics studies[J]. APPLIED CATALYSIS B-ENVIRONMENTAL,2019,255:18.
APA Yan, Qinghua.,Gao, Yanshan.,Li, Yuran.,Vasiliades, Michalis A..,Chen, Sining.,...&Efstathiou, Angelos M..(2019).Promotional effect of Ce doping in Cu-4 Al1Ox - LDO catalyst for low-T practical NH3-SCR: Steady-state and transient kinetics studies.APPLIED CATALYSIS B-ENVIRONMENTAL,255,18.
MLA Yan, Qinghua,et al."Promotional effect of Ce doping in Cu-4 Al1Ox - LDO catalyst for low-T practical NH3-SCR: Steady-state and transient kinetics studies".APPLIED CATALYSIS B-ENVIRONMENTAL 255(2019):18.
Files in This Item:
There are no files associated with this item.
Related Services
Recommend this item
Bookmark
Usage statistics
Export to Endnote
Google Scholar
Similar articles in Google Scholar
[Yan, Qinghua]'s Articles
[Gao, Yanshan]'s Articles
[Li, Yuran]'s Articles
Baidu academic
Similar articles in Baidu academic
[Yan, Qinghua]'s Articles
[Gao, Yanshan]'s Articles
[Li, Yuran]'s Articles
Bing Scholar
Similar articles in Bing Scholar
[Yan, Qinghua]'s Articles
[Gao, Yanshan]'s Articles
[Li, Yuran]'s Articles
Terms of Use
No data!
Social Bookmark/Share
All comments (0)
No comment.
 

Items in the repository are protected by copyright, with all rights reserved, unless otherwise indicated.