Knowledge Management System Of Institute of process engineering,CAS
Investigation of solution chemistry to enable efficient lithium recovery from low-concentration lithium-containing wastewater | |
Zhao, Chunlong1,2; He, Mingming2; Cao, Hongbin2; Zheng, Xiaohong2; Gao, Wenfang2; Sun, Yong3; Zhao, He2; Liu, Dalong4; Zhang, Yanling1; Sun, Zhi2 | |
2020-08-01 | |
Source Publication | FRONTIERS OF CHEMICAL SCIENCE AND ENGINEERING
![]() |
ISSN | 2095-0179 |
Volume | 14Issue:4Pages:639-650 |
Abstract | In the production of lithium-ion batteries (LIBs) and recycling of spent LIBs, a large amount of low-concentration lithium-containing wastewater (LCW) is generated. The recovery of Li from this medium has attracted significant global attention from both the environmental and economic perspectives. To achieve effective Li recycling, the features of impurity removal and the interactions among different ions must be understood. However, it is generally difficult to ensure highly efficient removal of impurity ions while retaining Li in the solution for further recovery. In this study, the removal of typical impurity ions from LCW and the interactions between these species were systematically investigated from the thermodynamic and kinetics aspects. It was found that the main impurities (e.g., Fe3+, Al3+, Ca2+, and Mg2+) could be efficiently removed with high Li recovery by controlling the ionic strength of the solution. The mechanisms of Fe3+, Al3+, Ca2+, and Mg2+ removal were investigated to identify the controlling steps and reaction kinetics. It was found that the precipitates are formed by a zero-order reaction, and the activation energies tend to be low with a sequence of fast chemical reactions that reach equilibrium very quickly. Moreover, this study focused on Li loss during removal of the impurities, and the corresponding removal rates of Fe3+, Al3+, Ca2+, and Mg2+ were found to be 99.8%, 99.5%, 99%, and 99.7%, respectively. Consequently, high-purity Li3PO4 was obtained via one-step precipitation. Thus, this research demonstrates a potential route for the effective recovery of Li from low-concentration LCW and for the appropriate treatment of acidic LCW. |
Keyword | lithium-containing wastewater lithium phosphate precipitation impurity ion |
DOI | 10.1007/s11705-019-1806-3 |
Language | 英语 |
WOS Keyword | ION BATTERY ; ELECTRONIC WASTE ; CATHODE SCRAP ; EXTRACTION ; SEPARATION ; METALS ; BRINES ; SUSTAINABILITY ; ZINNWALDITE ; ADSORPTION |
WOS Research Area | Engineering |
WOS Subject | Engineering, Chemical |
WOS ID | WOS:000537780500014 |
Publisher | SPRINGER |
Citation statistics | |
Document Type | 期刊论文 |
Identifier | http://ir.ipe.ac.cn/handle/122111/40940 |
Collection | 中国科学院过程工程研究所 |
Corresponding Author | Sun, Zhi |
Affiliation | 1.Univ Sci & Technol Beijing, State Key Lab Adv Met, Beijing 100083, Peoples R China 2.Chinese Acad Sci, Beijing Engn Res Ctr Proc Pollut Control, Inst Proc Engn, Key Lab Green Proc & Engn, Beijing 100190, Peoples R China 3.Univ Nottingham Ningbo China, Ningbo 315100, Peoples R China 4.Henan Bingsheng Biotechnol Co Ltd, Kaifeng 475103, Peoples R China |
Recommended Citation GB/T 7714 | Zhao, Chunlong,He, Mingming,Cao, Hongbin,et al. Investigation of solution chemistry to enable efficient lithium recovery from low-concentration lithium-containing wastewater[J]. FRONTIERS OF CHEMICAL SCIENCE AND ENGINEERING,2020,14(4):639-650. |
APA | Zhao, Chunlong.,He, Mingming.,Cao, Hongbin.,Zheng, Xiaohong.,Gao, Wenfang.,...&Sun, Zhi.(2020).Investigation of solution chemistry to enable efficient lithium recovery from low-concentration lithium-containing wastewater.FRONTIERS OF CHEMICAL SCIENCE AND ENGINEERING,14(4),639-650. |
MLA | Zhao, Chunlong,et al."Investigation of solution chemistry to enable efficient lithium recovery from low-concentration lithium-containing wastewater".FRONTIERS OF CHEMICAL SCIENCE AND ENGINEERING 14.4(2020):639-650. |
Files in This Item: | There are no files associated with this item. |
Items in the repository are protected by copyright, with all rights reserved, unless otherwise indicated.
Edit Comment