CAS OpenIR
杂原子型微孔聚合物的构筑及气体吸附性能研究
戎猛
Thesis Advisor刘会洲, 杨良嵘
2020-07-01
Degree Grantor中国科学院大学
Degree Name博士
Degree Discipline化学工艺
Keyword微孔有机聚合物,聚缩醛胺,氟化聚合物,聚卟啉,气体吸附分离
Abstract

微孔有机聚合物是一类具有高比表面积、孔道结构性质可调、低密度以及优异的热稳定和化学稳定性的多孔材料,在气体储存、气体吸附分离和有机污染物捕获方面显示出了良好的应用潜力。本论文基于孔道结构控制和杂原子功能化策略,设计合成了一系列富含极性杂原子(N、O、F)和金属离子(Fe2+)的微孔聚合物材料:聚缩醛胺、氟化聚合物和聚卟啉。重点考察了构筑单体的空间构型、连接臂及化学组成变化对聚合物比表面积和孔结构参数的影响。进一步研究了聚合物的化学组成和孔道结构与CO2吸附分离,H2储存及挥发性有机蒸气吸附之间的关系。论文的主要研究内容如下:(1)基于三角锥结构的富电三苯胺单元,设计合成了具有不同数量醛基(1-3)取代的三苯胺单体,与三聚氰胺通过溶剂热反应制备了三苯胺功能化的超微孔聚缩醛胺。研究发现,三苯胺的刚性立体结构是形成超微孔结构的关键,醛基数量越多,孔隙率越高。TMPs的BET比表面积介于452-709 m2/g,孔径大小集中在0.52和0.54 nm,并且N含量高达42.88 wt%。大量的超微孔机构和丰富的极性N原子使得TMP-1在273 K/1.0 bar下的CO2/N2和CO2/CH4选择性高达186.6和23.7。进一步利用1,4-双(2,4-二胺基-1,3,5-三嗪)苯与四面体的四(4-醛基苯基)甲烷、1,3,5,7-四(4-醛基苯基)金刚烷和四(4-醛基苯基)硅烷以及螺环状的2,2',7,7'-四醛基螺双芴反应制得BET比表面积介于1093-1179 m2/g的微孔聚缩醛胺MALPs。MALPs的CO2和H2吸附量最高达18.6 wt% (273 K/1.0 bar)和1.64 wt% (77 K/1.0 bar)。另外,MALPs也表现出较高的有机蒸气吸附能力,在298 K和0.1 P/P0相对压力下的苯、环己烷和甲苯蒸气吸附量分别为35.4、30.7和35.7 wt%。(2)为进一步提高聚缩醛胺的孔隙率,从正四面体结构的四苯基金刚烷单元出发,设计合成了兼具刚性结构和大分子内自由体积的四苯基金刚烷取代的八胺基三嗪。通过缩醛胺反应,制备了具有超高比表面积(1500-1779 m2/g)的四苯基金刚烷基微孔聚缩醛胺,是目前已报道聚缩醛胺材料中最高的。其中,Ad-MALP-2的微孔比表面积高达1247 m2/g,其CO2和H2吸附量达到了21.1 wt% (273 K/1.0 bar)和2.18 wt% (77 K/1.0 bar)。此外,同时拥有芳香和脂肪族结构单元的微孔聚缩醛胺表现出了超高的有机蒸气吸附能力,即使在298 K和0.1 P/P0相对压力下,Ad-MALPs的苯、环己烷和甲苯蒸气的吸附量也达到了44.0、39.0和38.8 wt%。(3)基于正四面体的1,3,5,7-四(4-溴苯基)金刚烷,通过与具有不同分子结构的氟芳烃进行C-H芳基化反应制得了四种氟化微孔聚合物。研究表明,氟芳烃连接臂数量越多,长度越短,形成的聚合物微孔孔隙率越高。其中,1,3,5-三氟苯构建的FMOP-4的BET比表面积高达1373 m2/g,CO2和H2吸附量分别达到了12.2 wt% (273 K/1.0 bar)和1.32 wt% (77 K/1.0 bar)。此外,氟元素的引入提高了聚合物骨架的疏水性,强疏水的FMOPs表现出了优异的有机蒸气吸附性能。在298 K和P/P0 = 0.9条件下,苯、环己烷和甲苯、正己烷和甲醇蒸气吸附量分别达到了149.6、122.8、105.9、80.8和76.7 wt%。(4)基于具有不同空间结构和化学组成多醛,通过与吡咯的溶剂热反应制备了一系列具有不同拓扑结构的微孔聚卟啉PPNs。研究发现,具有立体结构的三苯基磷和螺双芴构建的聚卟啉表现出更高的孔隙率,PPNs的BET比表面积介于582-892 m2/g。富含杂原子(N、O)和Fe2+的微孔聚卟啉PPNs表现出了非常高的CO2吸附热(30.9-38.1 kJ/mol),CO2吸附量最高可达17.6 wt% (273 K/1.0 bar),CO2/N2和CO2/CH4选择性高达57.6和14.6。PPNs的H2吸附量为1.15-1.44 wt% (77 K/1.0 bar),吸附热达到了8.34-9.48 kJ/mol。;Microporous organic polymers are a class of porous adsorbent materials with high specific surface area, adjustable pore structure properties, low density, and excellent thermal and chemical stability, which have shown promising application prospect in gas storage, gas adsorption separation, and organic pollutant capture. In this paper, a series of microporous polymer materials containing rich polar heteroatoms (N, O, F) and metal ions (Fe2+) including polyaminal, fluorinated polymer and polyporphyrin are designed and synthesized based on pore structure control and heteroatom functionalization strategies. The influence of the spatial configuration, connecting arms and chemical composition of the building monomer on the specific surface area and pore structure parameters of the polymer was investigated. The relationship between the chemical composition and pore structure of the polymer and CO2 adsorption and separation, H2 storage and volatile organic vapor adsorption was further studied. The main research contents of the paper are as follows:(1) Based on the triangle and electron-rich triphenylamine unit, three triphenylamine-based aldehydes were designed and synthesized. And triphenylamine functionalized ultramicroporous polyaminals were prepared though the polycondensation of triphenylamine-based aldehydes with melamine. This study shows that the rigid three-dimensional structure of triphenylamine is a key to the formation of ultra-microporous structure and the more aldehyde groups, the higher the porosity. The BET specific surface areas of TMPs are between 452-709 m2/g, their pore sizes are located at 0.52 and 0.54 nm, and the N content is high up to 42.88 wt%. A large number of ultra-microporous structures and abundant polar N atoms endow TMP-1 with excellent CO2/N2 and CO2/CH4 selectivities of 186.6 and 23.7 at 273 K/1.0 bar. Further, four microporous polyaminals MALPs with BET specific surface of 1093-1179 m2/g were prepared through the polymerization of 1,4-bis(2,4-diamino-1,3,5-triazine)benzene and tetrahedral tetra(4-aldehydephenyl)methane, 1,3,5,7-tetra(4-aldehydephenyl)adamantane, tetrakis(4-aldehydephenyl)silane and spirocyclic 2,2',7,7'-tetraaldehydespirobifluorene. The CO2 and H2 uptakes of MALPs are up to 18.6 wt% (273 K/1.0 bar) and 1.64 wt% (77 K/1.0 bar). In addition, MALPs also exhibit exceptional organic vapor adsorption capacities, and the benzene, cyclohexane and toluene vapors uptakes are up to 35.4, 30.7 and 35.7 wt% at 298 K and 0.1 P/P0 relative pressure, respectively.(2) To further increase the porosity of polyaminals, a tetraphenyladamantane-based octaaminotriazine with a rigid three-dimensional structure and a large internal molecular free volume was designed and synthesized. Through the aminal polymerization reaction, tetraphenyladamantyl microporous polyaminals with ultra-high specific surface area (1500-1779 m2/g) were prepared, which surpass all the reported polyaminals. Among them, Ad-MALP-2 has a largest micropore specific surface area of 1247 m2/g, and its CO2 and H2 uptakes reached 21.1 wt% (77 K/1.0 bar) and 2.18 wt% (77 K/1.0 bar). In addition, the microporous polyaminals with both aromatic and aliphatic structural units exhibited an extremely high organic vapor adsorption capacity. Even at 298 K and 0.1 P/P0 relative pressure, the uptakes of benzene, cyclohexane and toluene vapors reached 44.0, 39.0 and 38.8 wt%.(3) Baed on a tetrahedral 1,3,5,7-tetra(4-bromophenyl)adamantane, four fluorinated microporous polymers were prepared by C-H arylation reaction with fluoroaromatic hydrocarbons with different molecular structures. The results show that the greater the number of fluoroaromatic hydrocarbon connecting arms and the shorter the length, the higher the porosity of the polymer micropores formed. Among them, FMOP-4 constructed from 1,3,5-trifluorobenzene shows a BET specific surface area of up to 1373 m2/g, and the uptakes of CO2 and H2 are up to 12.2 wt% (273 K/1.0 bar) and 1.32 wt% (77 K/1.0 bar). In addition, the introduction of fluorine improves the hydrophobicity of the polymer backbone, and the strongly hydrophobic FMOPs exhibit excellent organic vapor adsorption properties. At 298 K and P/P0 = 0.9, the adsorption capacities of benzene, cyclohexane and toluene, n-hexane and methanol vapor reach 149.6, 122.8, 105.9, 80.8 and 76.7 wt%, respectively.(4) Based on polyaldehydes with different spatial structures and chemical compositions, a series of microporous polyporphyrin PPNs with different topologies were prepared by solvothermal reaction with pyrrole. It is found that three-dimensional triphenylphosphine and spirobifluorene bulding blocks result in the formation of polyporphyrins with higher porosity, and the BET specific surface area of PPNs are in the range of 582 and 892 m2/g. The microporous polyporphyrin PPNs embracing rich heteroatoms (N, O) and Fe2+ show very high CO2 adsorption heats (30.9-38.1 kJ/mol), and the CO2 uptakes can reach up to 17.6 wt% (273 K/1.0 bar), CO2/N2 and CO2/CH4 selectivities are up to 57.6 and 14.6. The H2 uptakes of PPNs are 1.15-1.44 wt% (77 K/1.0 bar), and the heats of adsorption reach 8.34-9.48 kJ/mol. 

Language中文
Document Type学位论文
Identifierhttp://ir.ipe.ac.cn/handle/122111/49691
Collection中国科学院过程工程研究所
Recommended Citation
GB/T 7714
戎猛. 杂原子型微孔聚合物的构筑及气体吸附性能研究[D]. 中国科学院大学,2020.
Files in This Item:
File Name/Size DocType Version Access License
杂原子型微孔聚合物的构筑及气体吸附性能研(29109KB)学位论文 限制开放CC BY-NC-SAApplication Full Text
Related Services
Recommend this item
Bookmark
Usage statistics
Export to Endnote
Google Scholar
Similar articles in Google Scholar
[戎猛]'s Articles
Baidu academic
Similar articles in Baidu academic
[戎猛]'s Articles
Bing Scholar
Similar articles in Bing Scholar
[戎猛]'s Articles
Terms of Use
No data!
Social Bookmark/Share
All comments (0)
No comment.
 

Items in the repository are protected by copyright, with all rights reserved, unless otherwise indicated.