Knowledge Management System Of Institute of process engineering,CAS
Ladder polymers of intrinsic microporosity from superacid-catalyzed Friedel-Crafts polymerization for membrane gas separation | |
Cai, Zhili1,2; Liu, Yitao1,2; Wang, Can2; Xie, Wei2; Jiao, Yang2; Shan, Linglong2; Gao, Peiyuan3; Wang, Haitao4; Luo, Shuangjiang2,5,6 | |
2022-02-15 | |
Source Publication | JOURNAL OF MEMBRANE SCIENCE
![]() |
ISSN | 0376-7388 |
Volume | 644Pages:9 |
Abstract | Polymers of intrinsic microporosity have attracted comprehensive attention in membrane-mediated gas separation because of their rigid and contorted structure that facilitates well-defined microporosity for fast and selective gas transport. We report a new macromolecular design synthesizes semi-ladder and fully-ladder polymers of intrinsic microporosity containing 9H-xanthene units by superacid-catalyzed Friedel-Crafts polymerization named SACPs. The prepared SACP membranes display high microporosity with amorphous chain packing structure, high FFV, and high BET surfaces areas. In particular, SACP-3 exhibited the most elevated BET surfaces area of 568 m(2)/g, fractional free volume (FFV) of 0.243, and bimodal micropore size distribution with two maxima at similar to 5 and similar to 8 angstrom, respectively. Due to its fully ladder architecture, SACP-3 exhibits highly permeable gas transport with CO2 permeability of 6497 Barrer and CO2/CH4 selectivity of 7.8, respectively. The microporosity and gas permeation properties of SACP membranes are also demonstrated to be highly tailorable by employing different monomers. The facile polymerization procedure, excellent solubility and processability, highly diverse tunability, and outstanding gas separation performance render SACP membranes attractive for many membrane mediated gas separation processes. |
Keyword | Polymer of intrinsic microporosity Ladder polymers Gas separation membrane Superacid-catalyzed polymerization Nature gas sweetening |
DOI | 10.1016/j.memsci.2021.120115 |
Language | 英语 |
WOS Keyword | POLYIMIDE MEMBRANES ; TRANSPORT PROPERTIES ; UPPER-BOUNDS ; PLASTICIZATION ; PERMEABILITY ; PERMEATION ; CO2/CH4 ; ENHANCEMENT ; PERFORMANCE ; SORPTION |
Funding Project | Dalian National Laboratory for Clean Energy (DNL) Cooperation Fund of CAS[DNL201917] ; Hebei Natural Science Foundation[B2020103009] ; Beijing Nova Program of Science and Technology[Z191100001119107] ; International Partner Program of CAS[122111KYSB20200035] ; National Natural Science Foundationof China[22008243] ; National Natural Science Foundationof China[22090063] |
WOS Research Area | Engineering ; Polymer Science |
WOS Subject | Engineering, Chemical ; Polymer Science |
Funding Organization | Dalian National Laboratory for Clean Energy (DNL) Cooperation Fund of CAS ; Hebei Natural Science Foundation ; Beijing Nova Program of Science and Technology ; International Partner Program of CAS ; National Natural Science Foundationof China |
WOS ID | WOS:000788432500002 |
Publisher | ELSEVIER |
Citation statistics | |
Document Type | 期刊论文 |
Identifier | http://ir.ipe.ac.cn/handle/122111/53028 |
Collection | 中国科学院过程工程研究所 |
Corresponding Author | Wang, Haitao; Luo, Shuangjiang |
Affiliation | 1.Shenyang Univ Chem Technol, Inst Ind Chem & Energy Technol, Sch Chem Engn, Shenyang 110142, Liaoning, Peoples R China 2.Chinese Acad Sci, Inst Proc Engn, Beijing 100190, Peoples R China 3.Chinese Acad Sci, Inst Chem, Beijing 100190, Peoples R China 4.Nankai Univ, Coll Environm Sci & Engn, Tianjin Key Lab Environm Technol Complex Transmedi, Key Lab Pollut Proc & Environm Criteria,Minist Edu, Tianjin 300071, Peoples R China 5.Chinese Acad Sci, Dalian Natl Lab Clean Energy, Dalian 116023, Peoples R China 6.Langfang Green Ind Technol Ctr, Langfang 065001, Peoples R China |
Recommended Citation GB/T 7714 | Cai, Zhili,Liu, Yitao,Wang, Can,et al. Ladder polymers of intrinsic microporosity from superacid-catalyzed Friedel-Crafts polymerization for membrane gas separation[J]. JOURNAL OF MEMBRANE SCIENCE,2022,644:9. |
APA | Cai, Zhili.,Liu, Yitao.,Wang, Can.,Xie, Wei.,Jiao, Yang.,...&Luo, Shuangjiang.(2022).Ladder polymers of intrinsic microporosity from superacid-catalyzed Friedel-Crafts polymerization for membrane gas separation.JOURNAL OF MEMBRANE SCIENCE,644,9. |
MLA | Cai, Zhili,et al."Ladder polymers of intrinsic microporosity from superacid-catalyzed Friedel-Crafts polymerization for membrane gas separation".JOURNAL OF MEMBRANE SCIENCE 644(2022):9. |
Files in This Item: | There are no files associated with this item. |
Items in the repository are protected by copyright, with all rights reserved, unless otherwise indicated.
Edit Comment