Knowledge Management System Of Institute of process engineering,CAS
Numerical Simulation of Flow Field Optimizing the Rotating Segregation Purification of Silicon for SoG-Si | |
Shang, Runlong1; Qian, Guoyu2,3; Wang, Zhi2,3; Zhou, Lu2; Sheng, Zhilin1 | |
2022-05-27 | |
Source Publication | METALLURGICAL AND MATERIALS TRANSACTIONS B-PROCESS METALLURGY AND MATERIALS PROCESSING SCIENCE
![]() |
ISSN | 1073-5615 |
Pages | 18 |
Abstract | In order to improve the preparation efficiency of high-purity silicon, a new method of rotary segregation purification has been developed to prepare polysilicon. Numerical simulation based on ANSYS19.0 software and water model experiments were used to study the distribution of flow field and optimize the impurity removal process. A numerical simulation model suitable for rotating interface is established. The simulation result is in good agreement with the water model experiment. A vortex flow is found in the middle of the mold when the mold insertion depth is 90 mm. The vortex is conducive to the thinning of the impurity enrichment layer at the solid-liquid interface. With the mold insertion depth increases from 90 to 170 mm, two vortex flows appear in the middle and bottom of the mold, respectively. Moreover, setting the mold rotation rate at 100 rpm can contribute to a more stable flow field and a higher melt flow velocity. When the diffusion layer thickness is less than 0.1 mm, the impurity segregation coefficient can approach close to its equilibrium segregation coefficient, indicating that impurity segregation be effectively enhanced by increasing the rotation rate of mold, strengthening the effect of solidification rate and increasing the rotational speed. Industrial tests were carried out at the 100 kg level. The result shows that the rotary segregation method and equipment can achieve the removal of very low impurity in silicon (99.999 pct), and SoG-Si (99.9999 pct) was obtained. This method provides a new way for silicon purification, and it is believed that better results can be obtained through continuous improvement. |
DOI | 10.1007/s11663-022-02558-7 |
Language | 英语 |
WOS Keyword | CFD SIMULATION ; DIRECTIONAL SOLIDIFICATION ; PIV MEASUREMENT ; MAGNETIC-FIELD ; STIRRED TANKS ; GAS-LIQUID ; ALLOY ; SEPARATION ; REMOVAL ; MELT |
Funding Project | National Key R&D Program of China[2018YFC1901801] ; National Natural Science Foundation of China[51934006] ; National Natural Science Foundation of China[U1902219] |
WOS Research Area | Materials Science ; Metallurgy & Metallurgical Engineering |
WOS Subject | Materials Science, Multidisciplinary ; Metallurgy & Metallurgical Engineering |
Funding Organization | National Key R&D Program of China ; National Natural Science Foundation of China |
WOS ID | WOS:000805488100003 |
Publisher | SPRINGER |
Citation statistics | |
Document Type | 期刊论文 |
Identifier | http://ir.ipe.ac.cn/handle/122111/53711 |
Collection | 中国科学院过程工程研究所 |
Corresponding Author | Qian, Guoyu |
Affiliation | 1.North Minzu Univ, 204 Wenchang North St, Yinchuan 750001, Ningxia, Peoples R China 2.Chinese Acad Sci, Natl Engn Res Ctr Green Recycling Strateg Met Res, Inst Proc Engn, 1 North 2nd St, Beijing 100190, Peoples R China 3.Univ Chinese Acad Sci, Beijing 100049, Peoples R China |
Recommended Citation GB/T 7714 | Shang, Runlong,Qian, Guoyu,Wang, Zhi,et al. Numerical Simulation of Flow Field Optimizing the Rotating Segregation Purification of Silicon for SoG-Si[J]. METALLURGICAL AND MATERIALS TRANSACTIONS B-PROCESS METALLURGY AND MATERIALS PROCESSING SCIENCE,2022:18. |
APA | Shang, Runlong,Qian, Guoyu,Wang, Zhi,Zhou, Lu,&Sheng, Zhilin.(2022).Numerical Simulation of Flow Field Optimizing the Rotating Segregation Purification of Silicon for SoG-Si.METALLURGICAL AND MATERIALS TRANSACTIONS B-PROCESS METALLURGY AND MATERIALS PROCESSING SCIENCE,18. |
MLA | Shang, Runlong,et al."Numerical Simulation of Flow Field Optimizing the Rotating Segregation Purification of Silicon for SoG-Si".METALLURGICAL AND MATERIALS TRANSACTIONS B-PROCESS METALLURGY AND MATERIALS PROCESSING SCIENCE (2022):18. |
Files in This Item: | There are no files associated with this item. |
Items in the repository are protected by copyright, with all rights reserved, unless otherwise indicated.
Edit Comment