Knowledge Management System Of Institute of process engineering,CAS
Mild Catalytic Mechanism of the Mannich Reaction for Synthesizing Methylacrolein by sec-Amine Short-Chain Aliphatic Acid Ionic Liquid Catalysts | |
Yan, Hanwen1,2; Huo, Feng2,3; Li, Ping1; Li, Chunshan2,3,4 | |
2022-05-06 | |
Source Publication | ACS SUSTAINABLE CHEMISTRY & ENGINEERING
![]() |
ISSN | 2168-0485 |
Pages | 12 |
Abstract | By density functional theory (DFT), we report a detailed mechanistic study on the synthesis of methylacrolein (MAL) by a mild Mannich reaction of formaldehyde (FA) and propionaldehyde (PA) catalyzed by sec-amine short-chain aliphatic acid ionic liquids (ILs). ILs exhibit excellent catalytic activity and create mild reaction conditions (45 degrees C) by dramatically decreasing the reaction energy barrier (24.43 kcal mol(-1)) in the decomposition step of Mannich bases (MBs) comapred to without ILs. Three key intermediates observed by DFT calcutations were identified by electron spray ionization mass spectrometry (ESI-MS) analysis. We systematically investigated the catalytic effect of ILs with different sec-amines (HNR2, R = CH3, C2H5, etc.) on the activation energy and different short-chain aliphatic acids (RCOOH, R= H, CH3 et al.) on the decomposition step of MBs. This work is intended to provide a thorough explanation of the synthesis mechanism of the mild Mannich reaction of MAL catalyzed by ILs from the theoretical aspect, which may give a favorable guidance for the practical application. |
Keyword | ionic liquids DFT calculations methylacrolein Mannich reaction mechanism |
DOI | 10.1021/acssuschemeng.2c00774 |
Language | 英语 |
WOS Keyword | DENSITY-FUNCTIONAL THEORY ; ELECTRON-DENSITY ; BASIS-SETS ; HYDRODESULFURIZATION ; ESTERIFICATION ; TEMPERATURE ; PERFORMANCE ; CONVERSION ; HYDROLYSIS ; KINETICS |
Funding Project | National Natural Science Fund for Distinguished Young Scholars[22025803] ; Hebei Natural Science Foundation[B2021103012] ; General Program of the National Natural Science Foundation of China[21878259] ; General Program of the National Natural Science Foundation of China[21878295] ; Discipline Project of Ningxia[NXYLXK2017A04] |
WOS Research Area | Chemistry ; Science & Technology - Other Topics ; Engineering |
WOS Subject | Chemistry, Multidisciplinary ; Green & Sustainable Science & Technology ; Engineering, Chemical |
Funding Organization | National Natural Science Fund for Distinguished Young Scholars ; Hebei Natural Science Foundation ; General Program of the National Natural Science Foundation of China ; Discipline Project of Ningxia |
WOS ID | WOS:000820180000001 |
Publisher | AMER CHEMICAL SOC |
Citation statistics | |
Document Type | 期刊论文 |
Identifier | http://ir.ipe.ac.cn/handle/122111/54158 |
Collection | 中国科学院过程工程研究所 |
Corresponding Author | Huo, Feng; Li, Ping |
Affiliation | 1.Ningxia Univ, State Key Lab High Efficiency Utilizat Coal & Gre, Coll Chem & Chem Engn, Yinchuan 750021, Ningxia, Peoples R China 2.Chinese Acad Sci, Beijing State Key Lab Ion Liquids Clean Proc, CAS Key Lab Green Proc & Engn, State Key Lab Multiphase Complex Syst,Inst Proc E, Beijing 100190, Peoples R China 3.Univ Chinese Acad Sci, Sch Chem Engn, Beijing 100049, Peoples R China 4.Chinese Acad Sci, Innovat Acad Green Manufacture, Beijing 100190, Peoples R China |
Recommended Citation GB/T 7714 | Yan, Hanwen,Huo, Feng,Li, Ping,et al. Mild Catalytic Mechanism of the Mannich Reaction for Synthesizing Methylacrolein by sec-Amine Short-Chain Aliphatic Acid Ionic Liquid Catalysts[J]. ACS SUSTAINABLE CHEMISTRY & ENGINEERING,2022:12. |
APA | Yan, Hanwen,Huo, Feng,Li, Ping,&Li, Chunshan.(2022).Mild Catalytic Mechanism of the Mannich Reaction for Synthesizing Methylacrolein by sec-Amine Short-Chain Aliphatic Acid Ionic Liquid Catalysts.ACS SUSTAINABLE CHEMISTRY & ENGINEERING,12. |
MLA | Yan, Hanwen,et al."Mild Catalytic Mechanism of the Mannich Reaction for Synthesizing Methylacrolein by sec-Amine Short-Chain Aliphatic Acid Ionic Liquid Catalysts".ACS SUSTAINABLE CHEMISTRY & ENGINEERING (2022):12. |
Files in This Item: | There are no files associated with this item. |
Items in the repository are protected by copyright, with all rights reserved, unless otherwise indicated.
Edit Comment