CAS OpenIR  > 研究所(批量导入)
硫氧化菌筛选及其在气体脱硫工艺中的应用
Alternative TitleSulfide Oxidizing Bacteria Selection and application for gas desulfurization process
宋子煜
Subtype博士
Thesis Advisor邢建民
2013-05-01
Degree Grantor中国科学院研究生院
Degree Discipline生物化工
Keyword生物硫氧化   生物硫氧化反应器   气体生物脱硫
Abstract硫化氢是一种恶臭、剧毒、强腐蚀性气体,广泛存在于天然气、沼气、炼化厂尾气、合成气中。不仅造成设备腐蚀,而且威胁现场人员安全。然而,硫化氢也是一种重要的硫资源,是生产硫磺的主要原料。天然硫磺资源有限,全球90%以上的硫磺来自于硫化氢氧化。此外,硫化合物是大气和水体的主要污染物,硫氧化物是造成酸雨的主要原因。将硫氧化物和硫酸盐转化为单质硫是减少污染的最有效方法之一。生物硫氧化是指利用硫氧化菌在限制氧气供应的条件下将硫化物转化为硫单质的方法。与硫酸盐还原菌结合,可将硫氧化物和硫酸盐转化为硫单质。与物理和化学法相比,生物硫氧化具有条件温和、无二次污染、脱硫率高、适用范围广等优点。本文开展了硫氧化菌菌种筛选及生物硫氧化过程的研究,探索了生物硫氧化在强化高含硫酸盐废水处理和烟气生物脱硫脱氮中的应用,并对生物硫氧化-硫回收工艺的经济性进行了分析。从厌氧消化反应器出水中分离筛选到硫氧化菌,经16S rDNA鉴定为Thiobacillus thioparus(专利菌种保藏号CGMCC 4826)。该硫氧化菌的最适pH值为7.0~8.0,温度为20~30oC,Na+最大耐受浓度为0.1 M。在好氧和缺氧条件下,该菌株的硫氧化速率分别是相同条件下化学氧化的104.5倍和364.1倍。该菌株对二硫化碳具有一定难受性,浓度低于0.01%的二硫化碳对细胞生长无明显影响。针对生物硫氧化产单质硫反应的要求设计了新型上流式内双循环生物反应器,并利用固定化菌株CGMCC 4826在不同ORP (Oxidation-Reduction Potential)值、进水pH值、负荷和HRT(Hydraulic Retention Time)等操作参数下考察了反应器硫化物脱除率和硫单质产率等主要性能指标。在进水pH值7.0~8.0,HRT 120 min,ORP -100 mV,负荷200 mmol/(L?d)的条件下,硫化物脱除率达到99.4%,硫单质生成率为89.5%。XRD(X-ray Diffraction)分析表明,硫单质的主要形态为S8。粒径分析表明,硫单质颗粒的直径为1~10 μm。在强化高含硫酸盐有机废水处理实验中,利用实验室保藏的嗜盐嗜碱性硫氧化菌Thialkalivibrio versutus Strain D301建立了硫化氢吹脱-生物硫氧化及硫回收工艺。通过硫化物外吹脱法控制一级厌氧反应器中硫化物浓度在100 mg/L以下,硫酸盐还原作用和厌氧消化作用均得到了有效的强化。并且,进水硫酸盐浓度提高对一级厌氧影响不明显。当进水硫酸盐浓度为4,000 mg/L时,一级厌氧的COD脱除率达到60%,硫酸盐脱除率大于90%。硫化物脱除率达到99.2%以上,单质硫生成率达90.4%。基于生物硫氧化建立的硫化物外吹脱法不仅可以有效提高含硫酸盐废水处理效率,而且可以从硫酸盐废水中高效回收硫磺。利用厌氧滤床和气升式流化床的建立了实验室小试烟气生物脱硫脱氮系统。厌氧段,硝酸盐被还原为氮气,硫酸盐被还原为硫化物。缺氧段,菌株CGMCC 4826将厌氧产生的硫化物转换为单质硫。硝酸盐脱除率和硫回收率可分别达到97.6%和77.1%。根据实验结果,针对硫化氢含量1%气体脱硫的设计了气体吸收-生物硫氧化及硫回收工艺,。基于物料平衡计算,进行了设备设计和选型,估算了日回收8.5 kg硫磺工艺的操作和维护成本。计算结果表明,年运行300天,日回收8.5 kg硫磺规模的气体吸收-生物硫氧化及硫回收工艺的成本为11,088.2元/吨。生物硫氧化工艺在气体脱硫、烟气脱硫和高含硫酸盐废水处理等领域具有重要应用价值。开发基于嗜盐嗜碱硫氧化菌的高盐高碱硫氧化新工艺,可以进一步降低能耗,提高反应器负荷,减少设备成本。
Other AbstractHydrogen sulfide is malodor, highly toxic and corrosive gas. Natural gas, biogas, landfill gas, refinery gas and synthentic gas often contain a certain amont of hydrogen sulfide, which can lead to equipement corrosion and be danger to life safety. However, hydrogen sulfide is an important sulfur resource. Element sulfur mainly used to make sulfuric acid, which is an important basic chemical raw material. 90% of the total element sulfur is from sulfur recovery. In addition, sulfur compounds are the main pollutants of both atmosphere and water environment. Sulfur oxides contribute the main part to acid rain, The most important method for the removal of sulfur oxides and sulfate is to be converted into element sulfur. Sulfide bio-oxidation is a method with the conversion of sufide into element sulfur by sulfide oxidizing bacteria (SOB) under oxygen limition conditions. Coupled with sulfate reducing bacteria, SOB has capacity to convert the sulfur oxides and sulfate into element sulfur. Compared with physical and chemical methods, the biodesulfurization has the advantages of mild conditions, free pollution, high sulfide removal rate and wide application range.In this research, sulfide oxidizing bacteria was isolated, a novel bioreactor for sulfide bio-oxidation was designed and optimized. Treatment of high sulfate wastewater and biodesulfurization and biodenitrification of flue gases were investigated, and the economy of this process was analyzed.A sulfide oxidizing bacteria was isolated from the influent of anaerobic digestion bioreactor, and was identified as Thiobacillus thioparus (Patent NO. CGMCC 4826)。The optimal ranges of the pH values and temperature were 7.0~8.0 and 20~30 oC, respectively. The maximum tolerant concentration of Na+ was 0.1 M。Under oxgen unlimited and limited conditions, the sulfide oxidizing average rates were 104.5 and 364.1 times than the chemical ones, respectively. When the concentration of carbon disulfide was below 0.01%, the cell growth was not obviously affected. A novel up flow inner double loops anoxic bioreactor had been developed to fit the requirements of sulfide bio-oxidation, the performances of this novel bioreactor under various operation parameters, such as ORP values (Oxidation-Reduction Potential), the pH values of influent, sulfide loading and HRTs (Hydraulic Retention Time), were investigated. The maximum of sulfide removal percentages was achieved, 99.4%, at pH 7.0~8.0, HRT 120 min, ORP -100 mV, and 200 mmol/(L?d) sulfide loading. Element sulfur production percentage was 89.5%. The XRD (X-ray Diffraction) analysis showed that the main form of element sulfur was S8.
Pages154
Language中文
Document Type学位论文
Identifierhttp://ir.ipe.ac.cn/handle/122111/8247
Collection研究所(批量导入)
Recommended Citation
GB/T 7714
宋子煜. 硫氧化菌筛选及其在气体脱硫工艺中的应用[D]. 中国科学院研究生院,2013.
Files in This Item:
File Name/Size DocType Version Access License
硫氧化菌筛选及其在气体脱硫工艺中的应用.(1349KB) 限制开放CC BY-NC-SAApplication Full Text
Related Services
Recommend this item
Bookmark
Usage statistics
Export to Endnote
Google Scholar
Similar articles in Google Scholar
[宋子煜]'s Articles
Baidu academic
Similar articles in Baidu academic
[宋子煜]'s Articles
Bing Scholar
Similar articles in Bing Scholar
[宋子煜]'s Articles
Terms of Use
No data!
Social Bookmark/Share
All comments (0)
No comment.
 

Items in the repository are protected by copyright, with all rights reserved, unless otherwise indicated.